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Bottom Line Up Front

• Wrappers to allow Fortran memory to be used as Kokkos Views
• (1D, 2D, …,7D) x (real, integer, complex) x (32,64), (also logical!)

• Routines to allocate memory with Kokkos from Fortran
• (1D, 2D, 3D)x(real, integer)x(32,64), (also logical!)

• Lots of compatibility testing
• x86 x gnu x 7.4 x (serial, openmp, cuda) x (release, debug) x (3.0, 3.1)
• x86 x intel x (19,20) x (serial, openmp) x (release, debug) x (3.0, 3.1)
• ppc x gnu x 7.4 x (serial, openmp, cuda) x (release, debug) x (3.0, 3.1)
• ppc x XL x 16 x serial x (release, debug) x (3.0, 3.1)

• Open source: https://github.com/kokkos/kokkos-fortran-interop 
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Motivation

• HPC world owns many Fortran LOC!
• Which we use every day! And is not going anywhere!

• But we generally cannot port it all at once.
• Thus we need an incremental porting strategy
• Keep our e.g. Fortran mains, drivers, physics packages

• But port relevant infrastructure, or hotspot kernels to C++
• But C++ doesn’t have multi-dimensional arrays as first class citizens!
• So we chose Kokkos for its Views which gives us `everything’ from 

Fortran arrays, plus first-class knowledge of memory spaces
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Fortran Language Compatibility Layer (FLCL)

• Our open-source contribution to the Kokkos ecosystem. Features:
• Fortran compatible types for Kokkos View and DualViews, and routines for 

their allocation and deallocation, to share memory allocated from C++ to 
Fortran and C++ kernels.

• Structs and helper routines to use Fortran memory from C++ kernels.
• Unit tests testing and examples using above.
• Utility routines for interfacing with Kokkos from Fortran.
• CI-like scripts for testing against various configurations of Kokkos library 

and compiler families.

• See: https://github.com/kokkos/kokkos-fortran-interop
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Incremental Porting on Hosts

• Memory Allocated by Fortran
• Initialization/Finalization of Kokkos
• Usage Example
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Memory Allocated by Fortran

• Motivated by the particular scenario of incrementally porting kernels, 
or infrastructure (e.g MPI), but only running on host-based systems

• We’re not re-writing the mains/drivers for our codes.
• So – how best to share a chunk of memory across an ABI?

• Our answer – recreate most of Fortran’s dope vector.
• Then share that recreation across the ABI.
• And on the far side, wrap things up in a Kokkos View.

• Then we have access to all of the very useful features of Kokkos with 
respect to parallel execution, and a convenient multidimensional 
access to memory.
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nd_array_t

• nd_array_t keeps track of:
• an array’s rank
• dimensions per rank
• strides per rank
• pointer to the beginning of the memory allocation

• How do we populate an nd_array_t?
• A routine called: to_nd_array_(l|i32|i64|r32|r64|c32|c64)_(1|2|3|4|5|6|7)d
• That’s a little verbose, so thankfully we can wrap it up in an interface and 

just call: result = to_nd_array(foo)
• Where foo is a Fortran array and result is an nd_array_t
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nd_array_t

• Rank is inferred from the dummy argument’s rank.
• Each rank’s dimension can be read via size()
• Stride is a little trickier, but we settled on taking the difference 

between successive elements in each rank.
• This avoids the need for the CONTIGUOUS attribute. (And thus a copy, if 

it’s not already true!)
• Pointer to data is straightforward, as well.
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Initializing and finalizing Kokkos

• Think of this as a once per program operation. Similar to 
MPI_Init/MPI_Finalize.
• Generally, we call Kokkos::Initialize() directly after MPI_Init, and 

Kokkos::Finalize() directly before MPI_Finalize.
• In FLCL, we provide:

• kokkos_initialize() (this version parses command line Kokkos arguments)
• kokkos_initialize_without_args()
• kokkos_finalize()

• See: https://github.com/kokkos/kokkos/wiki/Initialization
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Usage Example

• How about an AXPY? Everyone loves the AXPY.
program example_axpy
use, intrinsic :: iso_c_binding
use :: flcl_mod
use :: axpy_f_mod

implicit none

real(c_double), dimension(:), allocatable :: c_y
real(c_double), dimension(:), allocatable :: x
real(c_double) :: alpha
integer :: mm = 5000

... setup here ...

call kokkos_initialize()
call axpy(c_y, x, alpha)
call kokkos_finalize()

end program example_axpy
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Usage Examples

• The axpy() we call from our main.
module axpy_f_mod

use, intrinsic :: iso_c_binding
use :: flcl_mod
public
interface
subroutine f_axpy ...

end interface

contains

subroutine axpy( y, x, alpha )
use, intrinsic :: iso_c_binding
use :: flcl_mod
implicit none
real(c_double), dimension(:), intent(inout) :: y
real(c_double), dimension(:), intent(in) :: x
real(c_double), intent(in) :: alpha
call f_axpy(to_nd_array(y), to_nd_array(x), alpha)

end subroutine axpy
end module axpy_f_mod
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Usage Examples

• The binding we invoke from our axpy() 

module axpy_f_mod
use, intrinsic :: iso_c_binding
use :: flcl_mod
public
interface
subroutine f_axpy( nd_array_y, nd_array_x, alpha ) &
& bind(c, name='c_axpy')
use, intrinsic :: iso_c_binding
use :: flcl_mod
type(nd_array_t) :: nd_array_y
type(nd_array_t) :: nd_array_x
real(c_double) :: alpha

end subroutine f_axpy
end interface

contains
subroutine axpy ...

end module axpy_f_mod
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Usage Examples

• The C++ implementation of AXPY we ultimately invoke.
#include "flcl-cxx.hpp"
extern "C" {
void c_axpy( flcl_ndarray_t *nd_array_y,

flcl_ndarray_t *nd_array_x,
double *alpha )

{
using flcl::view_from_ndarray;

auto y = view_from_ndarray<double*>(*nd_array_y);
auto x = view_from_ndarray<double*>(*nd_array_x);

Kokkos::parallel_for( "axpy", y.extent(0), KOKKOS_LAMBDA( const size_t idx)
{
y(idx) += *alpha * x(idx);

});

return;
}

}
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Usage Example

• More details:
• https://github.com/kokkos/kokkos-fortran-interop/tree/master/examples/01-

axpy
• More examples:

• https://github.com/kokkos/kokkos-fortran-interop/tree/master/examples

https://github.com/kokkos/kokkos-fortran-interop/tree/master/examples/01-axpy
https://github.com/kokkos/kokkos-fortran-interop/tree/master/examples
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Incremental Porting on Hosts and Devices

• DualViews
• Usage Examples
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DualViews

• A Kokkos DualView is a view that has a backing memory allocation 
on both a Host and Device.

• Motivation for using one is that we want to give Fortran access to 
more exotic memory spaces in an incremental way.

• And that if possible, we would like the same user-facing 
implementation for multiple platforms.

• If we use DualView, we can write our kernels such that they use the 
device memory, and the right thing will happen on host-only 
platforms.
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kokkos_allocate_dualview

• kokkos_allocate_dualview_(l|i32|i64|r32|r64)_(1|2|3)d
• Accepts as input

• a Fortran pointer (to hold the View’s host data)
• an opaque pointer to the View (for scope)
• a string to populate the View’s label
• extents, one per dimension



Los Alamos National Laboratory

9/1/2020   |   21

kokkos_allocate_dualview code flow

• A little more complicated than just wrapping up Fortran memory
• kokkos_allocate_dualview() (matched to type/rank)

• Invokes a matching f_kokkos_allocate_dualview()
• Which is bound to a matching c_kokkos_allocate_dualview()

• Which stringifies a Fortran char array
• Creates a matching type/rank DualView with the stringified label
• And sets a temporary passed-in pointer to DualView’s h_view.data()

• Then we wrap up the Fortran pointer using c_f_pointer()
• Now we have a Fortran accessible DualView.
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Usage Examples

• Let’s walk through allocating a DualView from Fortran
• First we start in some application specific wrapper:

! allocate 'physics arrays'
real(c_double), dimension(:), pointer :: array_x
real(c_double), dimension(:), pointer :: array_y
type(c_ptr) :: v_x
type(c_ptr) :: v_y
... setup here ...

call kokkos_allocate_dualview(array_x, v_x, ”array_x", length)
call kokkos_allocate_dualview(array_y, v_y, ”array_y", length)
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Usage Examples

• Which goes through an interface and selects 
kokkos_allocate_dualview_r64_1d()
subroutine kokkos_allocate_dualview_r64_1d(A, v_A, n_A, e0)
use, intrinsic :: iso_c_binding
implicit none
real(REAL64), pointer, dimension(:), intent(inout) :: A
type(c_ptr), intent(out) :: v_A
character(len=*), intent(in) :: n_A
integer(c_int), intent(in) :: e0
type(c_ptr) :: c_A

character(len=:, kind=c_char), allocatable, target :: f_label
call char_add_null( n_A, f_label )
call f_kokkos_allocate_dualview_r64_1d(c_A, v_A, c_loc(f_label), e0)
call c_f_pointer(c_A, A, shape=[e0])

end subroutine kokkos_allocate_dualview_r64_1d
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Usage Examples

• f_kokkos_allocate_dualview_r64_1d() just exists to bind to its C 
counterpart.

interface
subroutine f_kokkos_allocate_dualview_r64_1d(c_A, v_A, n_A, e0) &
bind (c, name='c_kokkos_allocate_dualview_r64_1d’)
use, intrinsic :: iso_c_binding
implicit none
type (c_ptr), intent(out) :: c_A
type (c_ptr), intent(out) :: v_A
type (c_ptr), intent(in) :: n_A
integer (c_int), intent(in) :: e0

end subroutine f_kokkos_allocate_dualview_r64_1d
end interface
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Usage Examples

• The actual allocation then happens.

void c_kokkos_allocate_dualview_r64_1d( double** A,
dualview_r64_1d_t** v_A,
const char** f_label,
const int* e0)

{
const int e0t = std::max(*e0, 1);
std::string c_label( *f_label );
*v_A = (new dualview_r64_1d_t(c_label, e0t));
*A = (*v_A)->h_view.data();

}
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Usage Examples

• Finally back here, where we call c_f_pointer so that A wraps around 
h_view.data() 
subroutine kokkos_allocate_dualview_r64_1d(A, v_A, n_A, e0)
use, intrinsic :: iso_c_binding
implicit none
real(REAL64), pointer, dimension(:), intent(inout) :: A
type(c_ptr), intent(out) :: v_A
character(len=*), intent(in) :: n_A
integer(c_int), intent(in) :: e0
type(c_ptr) :: c_A

character(len=:, kind=c_char), allocatable, target :: f_label
call char_add_null( n_A, f_label )
call f_kokkos_allocate_dualview_r64_1d(c_A, v_A, c_loc(f_label), e0)
call c_f_pointer(c_A, A, shape=[e0])

end subroutine kokkos_allocate_dualview_r64_1d
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Usage Examples

• For a usage example which is a little more complex, see a mesh 
operations proxy which usages FLCL / DualViews:

• https://github.com/lanl/xkt

• In addition, while we show DualView in this section, we also have a 
version which uses just Views. This would be fine for CPU-based 
systems, but for GPU-based/accelerator-based systems requires 
some sort of UVM / coherent memory interface. Both are useful, but 
be aware of design constraints.

https://github.com/lanl/xkt
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Conclusions

• Open Source
• Future Work
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Open Source

• We released these ideas as open source.
• We want our lessons learned to be shared with the broader HPC 

community (and others).
• We `dogfood’ this method in production, so it is battle-tested.

• But, we’re not omniscient.
• So, we’re happy to have help and new ideas!
• Please feel free to file issues and/or merge requests:
• https://github.com/kokkos/kokkos-fortran-interop

• Development is somewhat interrupt driven, so requirements for new
features truly do matter.

https://github.com/kokkos/kokkos-fortran-interop
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Future Work

• We see the need for some fashion of memory manager on device-
compute based systems.
• For as long as host and device memories are not equal on a node.
• UMPIRE is one choice (moreso, as Kokkos and RAJA become more 

compatible) (see Jeff Miles work to integrate UMPIRE into Kokkos)
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Thanks

• We would like to thank ISO_C_BINDING for letting us do all of this in 
a standard way. Thank you, ISO_C_BINDING!
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Thank you! Questions?

Thank you for listening!

If you have questions, please ask – womeld@lanl.gov, file an issue on 
github, or ask on the Kokkos slack.

mailto:womeld@lanl.gov
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Backup Slides
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Usage Examples : Safety Features
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FortranIndex<T>

• EAP has LOTS of indirection arrays
• This means dealing with LOTS of index lists
• And if you want to share these index lists without a copy between 

Fortran and C++…

• It means dealing with a lot of 1-based indices
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FortranIndex<T>
Motivation

• As we’ve shown, arrays can be shared between C++ and Fortran
• Those arrays are, for better or worse, 0-based in C++ and 1-based 

Fortran
• However, indices don’t get mapped in this way!
• Easy to mess-up: when porting a kernel, you have to manually “fix” 1-

based indices
• Separate 0-based copy of index arrays is not feasible:

• Easy for these arrays to end up out of sync, leading to hard to debug 
problems

• Additional O(num_cell) allocations quickly add up
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What is FortranIndex<T>?

LOGICALLY 0-based indexes

Kokkos::View<FortranIndex<int32_t> *> x = {2, 5, 6, 3};

REPRESENTATIONALLY 1-based indexes

integer(INT32) :: x(:) = [3, 6, 7, 4]
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FortranIndex<T>

• C++ custom type
• Same size and layout as type T, where T is an integer type
• Internally stores integer value of type T by an offset of 1
• Works in non-host Kokkos execution and memory spaces
• ”Looks” like any integer

• Assignment operators (including =, +=, -=, etc.) overloaded
• Converts to other integer types, like a normal integer
• Impossible to observe “internal” value without reinterpret_cast

• Benchmark/Code-gen
• Literally just an additional inc/dec
• No overhead vs. explicit ”- 1” (in my testing!)
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Getting the Views to the right place, when Fortran 
knows nothing about them

• But, when we want to run a device-based kernel, how do ask Fortran 
to convey which View(s) we want it to use?
• Assuming of course, we have some physics-motivated code which passes 

around multi-dimensional arrays (raise your hand if you’re like us!)
• We spit-balled a few different ideas, and implemented one of them

• The first, is some sort struct or dictionary which would hold a list of View 
pointers
• Used to passing around some blob of state, so this would be one more thing to 

add to that
• The second, a hashing between the Fortran pointers and the DualView

pointers
• A little more automatic! 
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Usage Examples

• What if we add a bookkeeping hashmap to our allocation routine?

void c_kokkos_allocate_dualview_r64_1d( double** A,
dualview_r64_1d_t** v_A,
const char** f_label,
const int* e0)

{
const int e0t = std::max(*e0, 1);
std::string c_label( *f_label );
*v_A = (new dualview_r64_1d_t(c_label, e0t));
*A = (*v_A)->h_view.data();
insert_dualview_reference(A, v_A);

}
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Usage Examples

• Which looks something like this:
void insert_dualview_reference( void* host_ptr, 

void* dualview_ptr )
{
void** hp_temp1 = (void**)host_ptr;
void* hp_temp2 = *(hp_temp1);
void** dv_temp1 = (void**)dualview_ptr;
void* dv_temp2 = *(dv_temp1);
if (host_to_dualview_map == NULL) {
host_to_dualview_map = new std::map<void*,void*>();

}
if ( (*host_to_dualview_map).find(hp_temp2) !=

(*host_to_dualview_map).end() ) { 
std::cout << "Key already exists!\n";

}
(*host_to_dualview_map)[hp_temp2] = dv_temp2;

}
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Usage Examples

• Then when we get to the C++ part of the kernel wrapper (but before 
we get to the kernel launch on the device, we could simply:

void* retrieve_dualview_reference(void** host_ptr){
return (*host_to_dualview_map)[host_ptr];

}

• And then we’re off to the races and we have our DualView back 
where it matters (at the parallel_X launch sites).


